At the time the greatest common divisor was defined, it would have been possible to define a related number, the least common multiple.
Definition 5.1. Suppose a and b are two positive integers. The least common multiple [a, b] is the smallest positive integer which is a multiple of both a and b. The relationship between them is illustrated in the following lemma.
Lemma 5.2. Let a and b be two positive integers. Then
a) (a, b) [a, b] = abProof:
b) If d | a and d | b, then d | (a, b)
c) If a | m and b | m, then ab | m.
a) Consider the prime factorizations of a, b. LetThe least common multiple is used in arithmetic to add fractions, where it is called the least common denominator. For example, since [15, 21] = 15(21)/(15,21) = 15(21)/3 = 105a = p1a1p2a2...pkak(in this case, some exponents may be 0; a prime is included in the list if it is a divisor of either a or b).
b = p1b1p2b2...pkbkThen
(a, b) = p1c1...pkck where ci = min {ai, bi)Since ai + bi= ci + di for each i, (a, b) [a, b] = ab.
[a, b] = p1d1...pkdk where di = max (ai, bi)b) There are integers s, t such that (a, b) = as + bt. If a = dx, b = dy, (a, b) = d(xs) + d(yt) = d(xs + yt). So d | (a, b).
c) Let m = [a, b]q + r, 0
r<[a, b]. As in b), since a | m and a | [a, b], a | r. Similarly b | r. Since r < [a, b], this contradicts the fact that [a, b] is the LEAST common multiple of a and b. So r = 0. If (a, b) = 1, [a, b] = ab by part a), so ab | m.
The least common multiple arises when it is desired to solve several congruences (with different moduli) simultaneously. The process below appears to have been known in first century China. Hence it has come to be known as the Chinese Remainder Theorem.4/15 + 5/21 = (4/15)((21/3)/(21/3)) + (5/21)((21/3)/(21/3)) = (4(7) + 5(5))/105 = 53/105.
Theorem
5.3. The Chinese Remainder Theorem
Let m1, m2, ..., mr be positive integers such that (mi, mj) = 1 if i ![]() has a common solution of x, and if x, y are two such solutions xx ![]() Proof:
Here is a classic example. A man has a basket of eggs. He doesn't know how many eggs there are, but when he counts them by twos, there is one left over. Similarly, when he counts by threes or fives, there is one remaining. When he counts by sevens, there are two left over. What is the least number of eggs he could have in his basket? If x is the number of eggs, the system of congruences is xSo m=210, k1=105, k2=70, k3=42, k=30. To find b1, b2, b3, b4 solve 105b11One set of solution is b1=1, b2=1, b3=3, b4=4. Thus x=105(1)(1)+70(1)(1)+42(3)(1)+30(4)(1)=541. The smallest positive integer congruent to 541(mod 210) is 121. Thus the least number of eggs the man has is 121. |
While computations such as those of the above example are fascinating, the theoretical consequences are more important.
Theorem
5.4. Suppose (m1,
m2)
= 1. Then the equation f(x)0(mod
m=m1m2)
has a solution if and only if both f(x)
0(mod
m1), and f(x)
0(mod
m2)
have solutions (here f(x) is a polynomial with integer
coefficients).
Remark:
In fact if f(x)0(mod
m1)
has n1 solutions and f(x)
0(mod
m2)
has n2 solutions, then f(x)
0(mod
m)
has n1n2 solutions. See Niven,
Zuckerman, and Montgomery, Theorem 2.20, for a proof. In the
book, the theorem will be used to see if x21
a has solutions for certain composite moduli.
Proof:
If f(x)0(mod
m),
then for some integer k, f(x)
km=km1m2.
Thus f(x)
0(mod
m1)
and f(x)
0(mod
m2).
On the other hand, suppose f(x)
0(mod
m1)
and f(x)
0(mod
m2)
both have solutions. Suppose f(a1)
0(mod
m1)
and f(a2)
(mod
m2).
By the Chinese Remainder Theorem,
there is an integer x (mod m), x
a1(mod
m1)
and x
a2(mod
m2).
Then f(x)
f(a1)
0(mod
m1)
and f(x)
f(a2)
0(mod
m2).
Thus m1 | f(x),
m2 |
f(x).
Thus since (m1,
m2)
1,
by Lemma 5.2 m=m1m2 | f(x),
so f(x)
0(mod
m).
The Chinese
Remainder Theorem can also be used to help calculate the value of
Euler's -function.
a) If p is a prime,Proof:(pn) = pn - pn-1
b) If (m1, m2) = 1,(m1, m2) =
(m1)
(m2).
a) Suppose p is a prime. Then, consider the complete residue system 1, 2, ..., pn. The only integers in this list NOT relatively prime to p are p1, 2p, ..., (pn-1)p. ThusFor example, since(pn) = pn - pn-1.
b) The goal is to establish a one-to-one correspondence between integers a in the set {1, 2, ..., m} which are relatively prime to m and pairs of integers (a1, a2), wherea1 is in {1, 2, ..., m1}, relatively prime to m1First, suppose (a, m) = 1. Then (a, m1) = 1 and (a, m2) = 1. Let ai be the remainder when a is divided by mi, i = 1, 2. Second, suppose a1, a2 are as above. Then the Chinese Remainder Theorem assures there is a unique a in {1, 2, ..., m} with a
a2 is in {1, 2, ..., m2}, relatively prime to m2.a1(mod m1) and a
a2(mod m2). Since (a, m1) = 1 and (a, m2) = 1, it follows that (a, m1m2) = 1. Thus, since this one-to-one correspondence exists, f(m) = f(m1) f(m2).
determined by the Chinese Remainder Theorem (k1=9, k2=8; b1=1, b2=8) since xx1(mod 8)
x2(mod 9)
In order to find which integers are of the form x2 + xy + y2 for integers x, y (as desired by Loeb and Dacey), it is first necessary to study binary quadratic forms in general.
a) A function f(x, y) = ax2 + bxy +cy2 is called a binary quadratic form. If n = f(x0, y0) for some integers x0, y0, then the form f represents n properly if (x0, y0) = 1, improperly if (x0, y0)Theorem 5.7.1.
b) The points (x, y) where x, y are integers are called lattice points.
c) The discriminant d of a quadratic form is d = b2 - 4ac.
d) A form is calledpositive definite if it takes on only positive values when (x, y)(0, 0).
negative definite if it takes on only negative values when (x, y)(0, 0).
semidefinite if it takes on only non-negative values or non-positive values.
a) dTheorem 5.8. Let M = [m11m12; m21, m22]. Let [u; v] = M[x; y], that is u = m11x + m12y, v = m21x + m12y. Then this transformation is a permutation of the lattice points in the plane if and only if det M = +/- 1.0 or 1 (mod 4)
b) A form with d = 0 is semidefinite but not definite. A form with positive discriminant is indefinite. A form with negative discriminant is definite (positive if a>0, negative if a<0)
Definition 5.9. Two quadratic forms f(x, y) = ax2 + bxy + cy2 and g(x, y) = Ax2 + Bxy + Cy2 are said to be equivalent if there is a matrix M of determinant 1, M = [m11, m12; m21, m22], such that g(x, y) = f(m11x + m12y, m21x + m22y).
Theorem 5.8 suggests that matrices of determinant -1 could have been allowed in Definition 5.9. Indeed, some number theory texts allow this. Still others use the term "properly equivalent" if det M = 1, "improperly equivalent" if det M = -1. Niven, Zuckerman, and Montgomery use the approach of Definition 5.9.
a) Equivalence of forms partitions the set of quadratic forms into sets of forms all of which are equivalent to each other.Definition 5.10. Let f be a binary quadratic form whose discriminant is not a perfect square; f is called reduced if -|a| < b
b) Equivalent forms represent the same integers n, and represent the same integers properly.
c) Equivalent forms have the same discriminant.
Theorem 5.11. If d is not a perfect square, each equivalence class of binary quadratic forms of discriminant d contains at least one reduced form.
Theorem
5.12. Suppose f is a reduced
positive definite quadratic form of discriminant
d. The 0
< a (-d/3)0.5
.
Corollary
5.13. There is only one reduced form
with discriminant -3.
Proof: By Theorem 5.12 a = 1; b = 0 is impossible since db2 (mod 4). Therefore, Definition 5.10 assures b = 1, c = 1.
Theorem
5.14. Let n and d be
given
integers with n0.
There
is a binary quadratic form of discriminant d which represents
n
properly if and only if x21
d(mod
4|n|) has a solution.
Corollary
5.15. Suppose d
0 or 1 (mod 4). If p is an odd prime, there is a binary
quadratic
form of discriminant which represents p if and only if (d/p)
= 1.
Application to Löschian Numbers
Definition 5.16. A positive integer n is called Löschian if there are integers x and y such that n = x2 + xy + y2.
Since there is only one reduced form of
discriminant -3, namely x2 + xy + y2,
and since if n is representable by a form of discriminant -3 if
and only if it is representable by an equivalent reduced form, Theorem
5.14 assures that n is properly representable by x2
+ xy + y2 if and only if x21
-3 (mod 4n) or x2 + 3
0(mod 4n) has a solution.
By Theorem 5.4,
x2
+3 0 (mod 4n)
has a solution if and only if x2 +3
0 (mod piai) has a solution for every i.
1) If p | n and pThus N is properly representable by x2 + xy + y2 if and only if N = 3appb, where every p1 (mod 3), then by quadratic reciprocity (-3/p) = (p/3) = 1 and also (-3/pn) = (pn/3) = (p/3)n = 1, so x2 +3
0(mod pn) has a solution for every n.
2) However suppose p2(mod 3). Then (-3/p) = 1, and so x2 +3
0(mod p) has no solution. But x2 +3
0(mod pn) implies pn | (x2 +3) which in turn implies that p | (x2 +3), which is impossible.
3) Of course x2 +30(mod 3) has a solution (x = 0) but x2 +3
0(mod 3n) has no solution for n>1 since 9|(x2 +3) implies 3|x2 implies 3|x, say x=3a; but then x2 +3 = 3(3a2 + 1)
3 (mod 9), a contradiction.
So if N2(mod
3),
N is non-Löschian.
For example, N=32759 is non-Löschian (it is not immediately obvious that N = 17(41)(47).
Similarly, suppose N = pnM,
where (M,
p) = 1, p0,
1 (mod p). If M
2(mod
3), N is non-Löschian, since the sum of the exponents of
the
primes
2(mod 3) in
the
prime factorization of M must be odd.
For example, N
= 8073 = 33(299), and 299 2
(mod 3). So 8073 is non-Löschian. In fact, 8073 = 33(13)(23).
In summary,
Theorem
5.17. Let N be a positive integer. Then
a) N is properly representable as x2 + xy + y2 for integers x, y if and only if N = 3aM, where a = 0,1 and every prime factor of M isLöschian numbers: examples of Theorem usage1(mod 3).
b) N is Löschian if N = 3aMT2, where every prime factor of M is1(mod 3) and every prime factor of T is
2(mod 3).
c) N is non-Löschian if N2(mod 3)
d) N is non-Löschian if N = pnM, (M, p) = 1, M2(mod 3).